Special Issue: "Visions of bio-inorganic chemistry: metals and the molecules of life."

The latest special issue of FEBS Letters follows Nobel symposium #168. Edited by Martin Högbom.
Special Issue: "Visions of bio-inorganic chemistry: metals and the molecules of life."

In this special issue on bio-inorganic chemistry, FEBS Letters features reviews, perspectives, and research from speakers at the 2022 Nobel symposium, “Visions of bio-inorganic chemistry: metals and the molecules of life.”

As Martin Högbom notes in his Editorial, which reflects on this issue’s eponymous symposium and offers context for and a thoughtful overview of the issue’s contents, bio-inorganic chemistry is by nature an inter- and multidisciplinary area of study.

Consequently, this diverse and exciting collection offers contributions on radical[1] and redox biochemistry,[2][3][4][5] metallo-enzymology,[6][7] chemical biology,[8][9] cellular signaling[10] and transport,[11] coordination chemistry and nanomedicine,[12] as well as reviews on the fundamental biochemical processes of nitrogen fixation[13][14] and water oxidation.[15][16]

We hope our readers will find this special issue interesting, informative, and timely, and we thank editor Martin Högbom and all our authors for their excellent contributions.

The cover image captures an intermediate state of water oxidation in the Kok cycle, and is taken from Simon et al. ‘Capturing the sequence of events during the water oxidation reaction in photosynthesis using XFELs’.

  1. Broderick, J.B., Broderick, W.E. and Hoffman, B.M. (2023), Radical SAM enzymes: Nature's choice for radical reactions. FEBS Lett, 597: 92-101. https://doi.org/10.1002/1873-3468.14519
  2. Ravanfar, R., Sheng, Y., Gray, H.B. and Winkler, J.R. (2023), Tryptophan-96 in cytochrome P450 BM3 plays a key role in enzyme survival. FEBS Lett, 597: 59-64. https://doi.org/10.1002/1873-3468.14514
  3. Giese, B., Karamash, M. and Fromm, K.M. (2023), Chances and challenges of long-distance electron transfer for cellular redox reactions. FEBS Lett, 597: 166-173. https://doi.org/10.1002/1873-3468.14493
  4. Salamatian, A.A. and Bren, K.L. (2023), Bioinspired and biomolecular catalysts for energy conversion and storage. FEBS Lett, 597: 174-190. https://doi.org/10.1002/1873-3468.14533
  5. Schulz, V., Freibert, S.-A., Boss, L., Mühlenhoff, U., Stehling, O. and Lill, R. (2023), Mitochondrial [2Fe-2S] ferredoxins: new functions for old dogs. FEBS Lett, 597: 102-121. https://doi.org/10.1002/1873-3468.14546
  6. Kipouros, I. and Solomon, E.I. (2023), New mechanistic insights into coupled binuclear copper monooxygenases from the recent elucidation of the ternary intermediate of tyrosinase. FEBS Lett, 597: 65-78. https://doi.org/10.1002/1873-3468.14503
  7. Klinman, J.P. (2023), Dynamical activation of function in metalloenzymes. FEBS Lett, 597: 79-91. https://doi.org/10.1002/1873-3468.14515
  8. Butler, A., Jelowicki, A.M., Ogasawara, H.A., Reitz, Z.L., Stow, P.R. and Thomsen, E. (2023), Mining elements of siderophore chirality encoded in microbial genomes. FEBS Lett, 597: 134-140. https://doi.org/10.1002/1873-3468.14539
  9. Osman, D. and Robinson, N.J. (2023), Protein metalation in a nutshell. FEBS Lett, 597: 141-150. https://doi.org/10.1002/1873-3468.14500
  10. Goldberg, J.M. and Lippard, S.J. (2023), Mobile zinc as a modulator of sensory perception. FEBS Lett, 597: 151-165. https://doi.org/10.1002/1873-3468.14544
  11. Camponeschi, F. and Banci, L. (2023), Metal trafficking in the cell: Combining atomic resolution with cellular dimension. FEBS Lett, 597: 122-133. https://doi.org/10.1002/1873-3468.14524
  12. Moreno-Alcántar, G. and Casini, A. (2023), Bioinorganic supramolecular coordination complexes and their biomedical applications. FEBS Lett, 597: 191-202. https://doi.org/10.1002/1873-3468.14535
  13. Siegbahn, P.E.M. (2023), Computational modeling of redox enzymes. FEBS Lett, 597: 38-44. https://doi.org/10.1002/1873-3468.14512
  14. Threatt, S.D. and Rees, D.C. (2023), Biological nitrogen fixation in theory, practice, and reality: a perspective on the molybdenum nitrogenase system. FEBS Lett, 597: 45-58. https://doi.org/10.1002/1873-3468.14534
  15. Lubitz, W., Pantazis, D.A. and Cox, N. (2023), Water oxidation in oxygenic photosynthesis studied by magnetic resonance techniques. FEBS Lett, 597: 6-29. https://doi.org/10.1002/1873-3468.14543
  16. Simon, P.S., Makita, H., Bogacz, I., Fuller, F., Bhowmick, A., Hussein, R., Ibrahim, M., Zhang, M., Chatterjee, R., Cheah, M.H., Chernev, P., Doyle, M.D., Brewster, A.S., Alonso-Mori, R., Sauter, N.K., Bergmann, U., Dobbek, H., Zouni, A., Messinger, J., Kern, J., Yachandra, V.K. and Yano, J. (2023), Capturing the sequence of events during the water oxidation reaction in photosynthesis using XFELs. FEBS Lett, 597: 30-37. https://doi.org/10.1002/1873-3468.14527

Join the FEBS Network today

Joining the FEBS Network’s molecular life sciences community enables you to access special content on the site, present your profile, 'follow' contributors, 'comment' on and 'like' content, post your own content, and set up a tailored email digest for updates.